Data Science Course

Home » Programmes » Data Science Course

Full Time
(9 Weeks)

Part Time
(24 Weeks)

Flexible
Payment

About The Data Science Course

Learn data science from Python to advanced Machine Learning, get all the skills to join a data science team and boost your career. Le Wagon is an immersive experience that takes you from beginner to junior data scientist within weeks. At the end of the course, you will learn to explore, clean and transform data into actionable insights and how to implement Machine Learning models from start to finish in a production environment, working in teams with the best-in-class tool belt.

Our data science course in Mauritius is designed to make you  explore, clean, analyse and predict data can lead to different paths The course can be done full time (9 Weeks) and Part-time (24 Weeks).

After the bootcamp, our students are granted lifetime access to our online platform with up-to-date videos and tutorials about the latest tools and best practices of software development. They also become members of our highly engaged community and network of international talents and teachers who keep helping each other and sharing opportunities on a daily basis.

Honoris Enquiry Form

Enquiry details

Consent(Required)
This field is for validation purposes and should be left unchanged.

What you will learn ?

learn_the_language_of_developers-2ecc3a87c7c98a52b3918f635fbb04c4a7280af2c4509c6d7fdc774049aff1e5

Course Outcomes & Opportunities

Course Structure

Duration: Full-time (9 Weeks), Part-time (24 Weeks)
  • Python prerequisites
  • Mathematics prerequisites
  • Testing your skills

Our Data Science course requires a basic level of Python & Mathematics. As we want all of our students to succeed, you’ll be able to test your level and refresh your skills before the bootcamp starts.

This module covers the fundamentals of Python and Mathematics for data science.

You’ll learn the basics of programming in Python, how to work with Jupyter Notebook & Jupyter Lab, and will become familiar with powerful Python libraries used in data science, such as Pandas and NumPy, to explore big data sets and conduct statistical analyses.

Additionally, we’ll teach you how to collect data from various sources, including CSV files, SQL queries on relational databases, Google Big Query, APIs and Web scraping. You’ll also learn how to build visualisations in order to transform your data into actionable insights. Finally, you’ll understand the concepts of probability, statistics, and linear algebra that underly Data Analysis and Machine Learning.

Contents

  • Python For Data Science
  • Relational Database & SQL
  • Data Visualization
  • Statistics, Probability, Linear Algebra

Skilled Learned

In your first one-week-long mini-project, you’ll learn how to use statistical tools and multivariate regression analysis to answer a real business question like a real data analyst.

You’ll learn how to structure a Python repository with object-oriented programming in order to clean your code and make it re-usable, how to survive the data preparation phase of a vast dataset, and how to find and interpret meaningful statistical results based on multivariate regression models.

Contents

  • Structure a Python project’s folder
  • Data Analysis
  • Hypothesis (A/B) Testing
  • Statistical tools (statsmodels)
  • Multivariate regression analysis

In this module, you’ll understand the different classes of machine learning models and their applications. You’ll dive deep into the most used library in Machine Learning: scikit-learn. You’ll start with supervised learning and classic methods like linear and logistic regressions to solve prediction tasks. You’ll then move to unsupervised learning and implement methods like PCA for dimensionality reduction or clustering for discovering groups in a data set. Additionally, we’ll teach you how to identify overfitting and the different techniques available to avoid it. Finally, you’ll learn how to tune and evaluate different models to achieve the best performance using methods like cross-validation and hyperparameter tuning. Along the way, you’ll implement all the essential learning algorithms such as KNN, Support Vector Machines and Ensemble Methods like Random Forests or Gradient Boosting.

Skilled Learned

This module is based on real life problems that will challenge you to optimize your features and architecture in order to get the best performance.

Contents

  • Neural Networks
  • Computer Vision
  • Times-Series & Text data
  • Deep Learning Made Easy
 
Skilled Learned
 
  • Understand the architecture of neural networks
  • Build your own networks
  • Build and train Convolutional Neural Networks (CNN)
  • Image preprocessing and batch data loading
  • Data Augmentation
  • Transfer Learning (VGG16, etc.)
  • Build and train Recurrent Neural Networks (RNN, LSTM, etc.)
  • Multiple-output time-series forecasts
  • Word Embedding
  • Sentiment analysis
  • Dense Neural Network architecture
  • Performance evaluation and overfitting
  • Build and train NN with the Tensorflow Keras library
  • Launch online training on GPUs with Google Colab

In one week, learn all the best practices around tackling an exciting ML problem too big to solve on your computer alone, and make its prediction available to the world via an API!
First, we’ll teach you how to become more productive in building a machine learning model by using the right workflow. We will then leverage a library called MLflow to log your multiple experimentations, iteration and tuning. Third, we’ll show you how to train at scale using cloud computing power with Google Cloud AI Platform. Finally, you’ll learn Docker to deploy your code and model to production and make it available to the world using Cloud Run or Kubernetes Engine.

Contents

  • Machine Learning Pipeline
  • Machine Learning workflow with MLflow
  • Train at scale with Google Cloud Platform

Skilled Learned

The goal of this module is to bring together all the components you’ve learned so far and work on real open-ended problems in teams.

Skilled Learned

Learning Outcomes

Upon successful completion of the Data Science Course, the student should be able to:
learningOutLW

Career Week

At the end of the bootcamp, you are welcome to join our Career Week. This week gives you the tools you need to take the next steps in your career, whether it is finding your first job in tech, building a freelance career, or launching a start-up.

le wagon 20211013-10

Workshops

Benefit from a combination of panel discussions, workshops, presentations, and assignments to help you find the right career path.

FJR_6917-(1)

Becoming job-ready

Prepare your personal profile, complete job applications, prepare for technical challenges, and make a game plan for after the bootcamp!

le-wagon-20211013-3

Inspiration

Hear from alumni about their post-Bootcamp journeys and what a typical day looks like in their new careers
le wagon 20211013-29

Custom-made

You can join any workshops or watch any tutorials that you are interested in. You create your own career week according to your interests and objectives

Apply Now

Improve and develop your knowledge and competencies.